
The Martinelli-Parisi systematic expansion in lattice gauge theory-Z(2) model on a cubic lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 1235

(http://iopscience.iop.org/0305-4470/19/7/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 1235-1243. Printed in Great Britain 

The Martinelli-Parisi systematic expansion in lattice gauge 
theory-Z(2) model on a cubic lattice 

Hiroshi Yoneyama 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4, Ireland 

Received 22 April 1985, in final form 23 August 1985 

Abstract. The Martinelli-Parisi systematic expansion is applied to the three-dimensional 
Z(2)  system as a first application to gauge theory. To first order in perturbation, four 
kinds of new operators appear. The critical point is significantly improved, while the 
non-trivial fixed point acquires an undesirable relevant eigenvalue. 

1. Introduction 

The real space renormalisation group (RSRG) is a powerful method for studying critical 
phenomena. In recent works on lattice gauge theory, it has been shown that RSRG is 
very useful when it is combined with the Monte Carlo simulation techniques. On the 
other hand, it is also very important to exploit analytical tools to acquire a fundamental 
understanding of the theory. The Migdal-Kadanoff ( MK) renormalisation group recur- 
sion equation [ 1,2] has been found to provide one such tool [3-61. 

Some years ago, Martinelli and Parisi showed how to improve systematically the 
M K  equation by introducing a parameter E ,  which formally connects the M K  result 
( E  = 0) and the exact case ( E  = 1) [7]. The E is a quantity which controls a magnitude 
of the potential shifting. The advantage is that, by developing the physical quantities 
in powers of E ,  one can systematically incorporate the long range interactions according 
to the powers of E.  Such a method has been successfully applied to two-dimensional 
systems such as the Ising model [7], the Potts model [8], the O ( N )  non-linear (+ model 
[9] and the Z(4)  model [lo]. So it would seem reasonable to apply this expansion 
method to lattice gauge theory in order to acquire accurate renormalisation group 
equations. Before studying more realistic systems like the 4~ non-Abelian gauge theory, 
we consider here, as a first step, the simplest non-trivial lattice gauge system, namely 
the Z(2)  theory on a three-dimensional cubic lattice. 

The following procedure is used to obtain the recursion equations. Starting from 
a three-dimensional cubic elementary cell of size L3, we perform dilatation R,  success- 
ively in the three directions ( p  = x, y ,  z )  and get the effective theory on the cubic cell 
of size (2LI3. Each R, consists of a potential shifting and a subsequent decimation. 
The shift in question is of the inner plaquettes of the obtained rectangular 
parallelepipeds to the outer ones by the amount (1 - &)&A,, where A, refers to the 
simple plaquettes perpendicular to the p direction and p, are the respective coupling 
constants. The decimation is a summation over the link variables on the inner plaquettes 
with the strength EP,. After symmetrisation on the isotropy, such a process produces 
four new coupling constants of O ( E ) .  These coupling constants are associated with 
the interactions of the plaquettes with the three-dimensional configurations. 
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The result, which we will discuss in detail in 9 3, is that the value of the critical 
coupling constant is remarkably improved-in fact it is almost equal to the known 
result-but the fixed point acquires an undesirable new relevant eigenvalue. 

In the following section, we give the detailed derivation of the MK recursion 
equations for this case. In § 3, the results and some remarks are presented. 

2. 3D 2(2) model 

We shall consider a three-dimensional Z(2)  lattice gauge theory with action 

where the U are Z(2)  link variables on the contour (ijkl) of a plaquette and p is a 
coupling constant. 

2.1. Simple example 

In the first place, to make it clear how the recursion equations will be constructed, let 
us look at a simple calculation in which only a dilatation in the x direction is carried 
out and the theory has only a single coupling constant p. 

Figure 1 shows a dilatation in the x direction. Inner plaquettes in the yz  direction 
of the prolonged cell are shifted to the outer ones by the amount p (  1 -&)A,., where 
Ax refers to the plaquettes in the yz  direction. 

The decimation is performed over the link variables of the inner plaquettes with 
strength EP. We use the formula 

exp(ppup) = cosh p p (  1 + tanh ppap) (2.2) 

for each plaquette up with the coupling constant pp. By summing over the link 

F 

3 

1 2 - E ) p  

Figure 1. The dilatation R,  in the x direction. 
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variables on the internal plaquettes, we obtain, to O ( E )  

exp(Sb,ii) = C{( l+p2uA)( l+p2~B) (1  +p20c)(1 + p 2 u D )  

+ p4r[(uE+ uF) + ( uE + v F ) ( O A +  (+B+ cc + 
+ ((+E + uF)(‘AuB+ uA‘C + uAuD)l) e d ( 2  - E ) @  ( uEs. aF)l  (2.3) 

where p and r are given by p = tanh p and r = tanh EP = EP +0( E ~ ) ,  respectively, and 
C is some function of p, independent of the link variables. wA, uB, uc and uD denote 
the plaquette variables of the rectangles A, B, C and D, respectively, and and uF 
are plaquettes of the squares E and F (see figure 1). In order to get an effective action 
Sb,,, of the new cells, the RHS of (2.3) is exponentiated by using the formula 

(1 + p 2 a ) - ’  = (1 - p ’ a ) / (  1 7 4 ) ) .  (2.4) 

We now find that in addition to the simple plaquette interactions uA,. . . , uF, more 
complicated interactions of O ( E )  are generated, namely, (TECTA, uE(+B,. . . (chair type), 
u E u A u C , ,  . . . (bridge type) and UEuAffB,. . . (:orner type). They are illustrated in figure 
2. The new coupling constants p’ ,  p’ and p’ are given by 

tanh p ‘  = (tanh p)’ 
tanh /?‘=tanh[(2-~)/3]+K(l  -tanh2[(2-&)P]} 
tanh p*’= K 

tanh4 p 
(1 + tanh2 p)4 ‘  K = EP 

It is noted that the link variable appearing twice in the product of the plaquette 

13 T 4  

Figure 2. The plaquette interactions of O ( E ) ;  parallel type (coupling constant & y I ) ,  chair 
type ( c y 2 ) ,  comer type ( & y 3 )  and bridge type (&y4). 
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variables like UEUA does not contribute due to the Z(2) property of the variables. 
Moreover an identity on the product of six different plaquette variables 
(+A(+B(+c(+D(+EcTF= 1 is taken into account to obtain (2.6). 

2.2. Recursion equations 

If, starting from the single coupling constant p of the model (2.1) we had also made 
dilatations in the y and z directions, as well as the x direction, then we would have 
thirteen different coupling constants instead of the three coupling constants of (2.6). 
Thirteen is the number of all the possible different coupling constants generated to 
O(E). However, it would be reduced to five after isotropy symmetrisation. 

Now, to get a complete recursion equation, we start from a theory with five coupling 
constants (p ,  E ? , ,  &y2,  &y3,  E Y ~ )  on a cube. The p is the coupling constant corresponding 
to the simple plaquettes, and the others of O( E )  { E ? , }  are associated with the interactions 
of the plaquettes of the three-dimensional configurations as shown in figure 2. 

As the algebraic calculation to get the recursion equations are beyond that by hand, 
we use the SCHOONSCHIP to obtain them. By taking the potential shifting of the type 
A,.( 1 - E ) ,  the dilatation R,  in the x direction provides the following transformations: 

tanh pa = tanh2 p + K,(l-  tanh4 p)EI, 

t anhp&=tanhpX 

tanh P ;  = tanh[(2 - E ) . ]  + K,(  1 - tanh2[(2 - E ) P ] ) E * ~  

tanh 8: = KxEIa+3 (a = 1-10) 

K ,  = (1 + tanh2 p)-4 

where 
B(D), respectively, and /3; is that of the square plaquettes E(F) in figure 1. 

the new effective action is given by 

and P Q  denote the coupling constants of rectangular plaquettes A(C) and 

The new couplings of O ( E )  are referred to as 8: (a = 1-10) and the O ( E )  part of 

8 (+A(+C + S;(+B(+D + SSUEUF + S; (  (TA + C T ~ ) (  (+B + (+D) + a;( (TA + ~ c ) (  (+E + nF) 

In equation (2.7), the part of the contribution of 0(&)EIi ( i  = 1-13) arises from both 
the potential shifting and the coupling constants { &y i }  of O( E ) .  The explicit forms of 
Eli are shown in table 1. Due to the symmetry in the y and z directions, some coupling 
constants remain equal: 

P i =  .Q s: = 8; s; = 8;  8; = s; (2.9) 

so nine different coupling constants appear at this stage. 
In the next step, the dilatation R, in the y direction is performed. The decimation 

after the potential shifting of the type (1 - &)PLAY provides thirteen coupling constants. 
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Table 1. The coefficients a,,, a,, (a = 1-4) of i,; E^, = a,,EP0+I, ala tanh E?,, where Po is 
the O(1) part of p. a,, and a,, denote the contributions from the potential shifting and 
coupling constants of O ( E )  and {EY,}, respectively. 

U1 = P4, U2  = P2(1 +P2I2, 113 =p3(1 +p2) ,  uq= p2(1 + 3p2+p4), u5 = p ( l  +p2)(1+4p2+ p4), 
U 6  = p ( 1  +p2)(1  + 3 p 2  +p4) ,  p = tanh po. 

They are given by 

tanhpl=tanh2Pa+Ky(l-tanh4Pa)E1,  

tanh Pk = tanh[(2 - & ) P a ]  + K y (  1 - tanh2[(2 - 

tanh PE = tanh’ Pk+ K y (  1 - tanh4 P k ) E ,  

tanh 8: = KyEQ+3 

(2.10) 

(a = 1-10) 

K y  = [ ( 1 + tanh4 P )2( 1 + tanh’ 2P )2]-1 

where the relative positions of the plaquettes A-F on the rectangular parallelepipeds 
are preserved by the dilatations. The E‘i ( i  = 1-13) can be given in the form Si = 
bio.sPLo+Z, bi, tanh Sh, where PLO is the 0 (1 )  part of the coupling constant PL. The 
explicit forms of bio, { b i Q }  are shown in table 2. 

In the third step, the dilatation R, in the z direction provides the transformations 

tanh PX=tanh[ (2 -~ )P i ]+K,{ l  -tanh2[(2--.s)Pi]}EO1 

tanh = tanh’ pk+ K,( 1 - tanh4 & ) E O 2  

tanh PE = tanh’ ,BE+ K,( 1 -tanh4 p [ ) &  (2.11) 

tanh 8: = KzgQtj (a = 1-10) 

KZ = 1/{ 1 + tahh2[2 tanh-’(tanh’ P) ] } ’ (  1 + tanh4 2P)’. 

The Bi are given by E“i = c i o ~ ~ ~ o + Z ~ c i ,  tanh ab, where P I o  denotes the O(1) part of 
PL. See table 3 for cio and cia. 

Thus we arrive at an effective theory on the cube with double size. However, the 
approximation is not able to recover the isotropy and we still have thirteen different 
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Table 2. The coefficients b,,, b,,  of F, ;  E‘, = b,,EP;,+Z.,b,, tanh 8 ; .  PLO, PLO and PLO are 
the O(1) parts of Pa,  /?; and P k ,  respectively. 

Table 3. The coefficients c,,, c,, of i,; E‘, = c 2 , ~ P i 0 + I , c , ,  tanh 6;. {w,} are obtained from 
{U,} in table 2 by the change of variables w, = u~/PAsqE,PE=4B,  where qE=tanh P g o  and 
q B =  tanh Pko. P i o ,  Pko and PEo are the O ( 1 )  parts of P i ,  and Pk, respectively. 

i, w, 0 0 0 2w, 2w, 0 4w4 0 w,+ W6 0 
B: 0 2w, 2W6 0 0 0 4w4 0 2w2 0 4 w3 
E‘, 0 2w,  0 2w, 0 0 4w4 0 4w, 0 2 w3 
E‘, 0 2w, 0 0 0 0 0 0 0 0 0 
is 0 2w, 2W6 0 0 0 0 0 0 0 4w3 
8, 0 2w, 0 2w, 0 0 0 0 4w: 0 0 

i, w ,  0 0 0 2w2 wg 0 2w4 0 w5 0 
i, 0 2w,  0 0 0 0 2w4 0 2w2 0 2 w3 
51, WI 0 0 0 2w2 2w3 0 2w, 0 0 0 
4,  0 2w, 0 0 0 0 0 0 2w2 0 0 
4: WI 0 0 0 2w2 2w3 0 0 0 w5 + W6 0 
4, 0 2w, 0 0 0 0 0 0 0 0 2 w3 

8, w, 0 0 0 WIO 2w3 0 2w4 0 w6 

coupling constants. To recover the isotropy, we take the simple average as 
p‘=f (pII ;+  p;: + p;) 
Ey; =;(ST + si” + ST) 

Ey; = f ( s y  + SF + 8:) 
Ey; = s y  
E Y :  =f(S;(l 4- S$ + Sr0) 

(2.12) 

and we arrive again at five different couplings. 
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Table 4. Numerical values of bo, {b ,} ,  A,, {A,,,} and {A8,} at the MK fixed point &,= 
1.0044. 

bo -0.395 
b, 1.1ox 
b2 8.86 x 
b3 7.80 x 

A, 1.861 
,401 1.225 
A02 4.913 

1.694 
A04 2.537 

b4 2.12 x 

10.882 0.801 0.145 1.382\ 
1.057 7.299 3.511 3.766 

0.531 5.193 2.644 2.319 I 
10.589 1.388 0.476 1,3091 

If p is formally developed as P = Po+ E P ,  + ~~p~ . . . the recursion equations become 

@ b =  F M K ( P O )  (2.13) 

at O(1) and 

PI 

at O ( E ) ,  where bo, { b i } ,  A,,,,, {Aoi} and {A,} are complicated functions of Po. 

given by 

FMK(@O)  = 5{2 tanh-' z:+ tanh-'[tanh2(2 tanh-'z;)] 

The recursion equation (2.13) is nothing more than the MK one, and FMK(PO) is 

+ tanh-'(tanh4 2P0)} zo = tanh Po. (2.15) 
Equations (2.13) and (2.15) show a single non-trivial critical point at 

pc = 1.0044( P M K ) .  (2.16) 

To see the correction to P M K  we should substitute the value of P M K  into the 
coefficients bo, { b i } ,  A,, { A , }  and {A,,} in (2.14). Their numerical values are shown 
in table 4. 

In the following section, we use (2.14) to investigate the correction in the critical 
properties. 

3. Results and remarks 

The recursion equations for { y t }  in (2.14) are independent of P, .  This means that the 
critical behaviour of the canonical model with a coupling constant p (2.1) can be 
determined simply by tracing the movement of the PI component of the renormalisation 
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group trajectories which move in the five-dimensional space. We find numerically that 
the correction to the critical point is 

plc = -0.475 (3.1) 
and thus leads to the critical value pc = 1.004-0.475~. If we extrapolate this value to 
the E = 1 limit following [7], we obtain 

pc = PMKf ~ ( 1  - ; E ) P ~ C I . = I  = 0.767. (3.2) 
The value (3.2) is in remarkable agreement with the value pc = 0.761, which is derived 
from that of the three-dimensional Ising model through the duality argument. 

On the other hand, we find that the correction to.the fixed point becomes rather large: 

(3.3) 
As stated in [8], this is due to the fact that one of the eigenvalues of the recursion 

equations becomes marginal. In fact, in this case, the 4 x 4  submatrix {A , }  in (2.14) 
gives the following eigenvalues 

(PT,{~T})=(11.973, -0.176, -1.473, -1.034, -0.279). 

from which we see that the largest one A I  is almost marginal. (Note that the largest 
eigenvalue of the full matrix is Ao=Aoo= 1.861). The right and left eigenvectors for 
A 1  are (-0.989,0.014,0.116,0.083,0.022) and (0,0.134,0.803,0.381,0.438),respectively. 
The phenomenon that the critical point has good convergence properties, while the 
fixed point does not is not new-it also occurs in the 2~ Potts model [8]. 

An undesirable feature is that the critical point plc is located in the direction 
associated with the relevant eigenvalue A l .  In other words, the fixed point (3.3) no 
longer governs the critical behaviour of the canonical model (2.1) but is replaced by 
a fixed point located at infinity. This feature makes it difficult to decide whether the 
critical point is of first or second order. 

It is important to remark about the difference between the behaviour of the PT and 
of the critical point. Following [ll], we looked at the xi dependence of each, where 
xi are the parameters which change the strength of the potential shifting by the amount 
&xi-yi The value of PT is very sensitive to the value of xi, which reflects the change of 
the second largest eigenvalue A l  from the relevant to the irrelevant value passing 
through the marginal point. On the other hand, the critical point is almost insensitive 
of the change of A I  and shows a continuous and slow change on xi. The details will 
be reported in a subsequent paper [12]. 

Finally, we comment that the calculation is intricate due to the appearance of the 
large number of coupling constants. It is possible that these complications would be 
reduced by using a FCC lattice instead of a cubic one, because in two dimensions they 
are reduced by using a triangular lattice instead of a square, but we have not investigated 
this possibility. 
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