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Abstract. The Martinelli- Parisi systematic expansion is applied to the three-dimensional
Z(2) system as a first application to gauge theory. To first order in perturbation, four
kinds of new operators appear. The critical point is significantly improved, while the
non-trivial fixed point acquires an undesirable relevant eigenvalue.

1. Introduction

The real space renormalisation group (RSRG) is a powerful method for studying critical
phenomena. In recent works on lattice gauge theory, it has been shown that RSRG is
very useful when it is combined with the Monte Carlo simulation techniques. On the
other hand, it is also very important to exploit analytical tools to acquire a fundamental
understanding of the theory. The Migdal-Kadanoff (Mx) renormalisation group recur-
sion equation [1, 2] has been found to provide one such tool [3-6].

Some years ago, Martinelli and Parisi showed how to improve systematically the
MK equation by introducing a parameter & which formally connects the MK resuit
(e =0) and the exact case (¢ =1) [7]. The ¢ is a quantity which controls a magnitude
of the potential shifting. The advantage is that, by developing the physical quantities
in powers of ¢, one can systematically incorporate the long range interactions according
to the powers of e. Such a method has been successfully applied to two-dimensional
systems such as the Ising model [7], the Potts model {8], the O( N) non-linear o model
[9] and the Z(4) model [10]. So it would seem reasonable to apply this expansion
method to lattice gauge theory in order to acquire accurate renormalisation group
equations. Before studying more realistic systems like the 4D non-Abelian gauge theory,
we consider here, as a first step, the simplest non-trivial lattice gauge system, namely
the Z(2) theory on a three-dimensional cubic lattice.

The following procedure is used to obtain the recursion equations. Starting from
a three-dimensional cubic elementary cell of size L*, we perform dilatation R, success-
ively in the three directions (u = x, y, z) and get the effective theory on the cubic cell
of size (2L)*. Each R, consists of a potential shifting and a subsequent decimation.
The shift in question is of the inner plaquettes of the obtained rectangular
parallelepipeds to the outer ones by the amount (1—¢)B,A,, where A, refers to the
simple plaquettes perpendicular to the u direction and B, are the respective coupling
constants. The decimation is a summation over the link variables on the inner plaquettes
with the strength ¢8,. After symmetrisation on the isotropy, such a process produces
four new coupling constants of O(e). These coupling constants are associated with
the interactions of the plaquettes with the three-dimensional configurations.
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The result, which we will discuss in detail in § 3, is that the value of the critical
coupling constant is remarkably improved—in fact it is almost equal to the known
result—but the fixed point acquires an undesirable new relevant eigenvalue.

In the following section, we give the detailed derivation of the Mk recursion
equations for this case. In § 3, the results and some remarks are presented.

2. 3D Z(2) model

We shall consider a three-dimensional Z(2) lattice gauge theory with action
S=B Z O'iO'jO'kO'I (21)

ikl

where the o are Z(2) link variables on the contour (ijkl) of a plaquette and 8 is a
coupling constant.

2.1. Simple example

In the first place, to make it clear how the recursion equations will be constructed, let
us look at a simple calculation in which only a dilatation in the x direction is carried
out and the theory has only a single coupling constant 8.

Figure 1 shows a dilatation in the x direction. Inner plaquettes in the yz direction
of the prolonged cell are shifted to the outer ones by the amount B(1—¢)A,, where
A, refers to the plaquettes in the yz direction.

The decimation is performed over the link variables of the inner plaquettes with
strength 8. We use the formula

exp(B,0,) = cosh B,(1+tanh B,0,) (2.2)

for each plaquette o, with the coupling constant 8, By summing over the link

ef F

\ 12-¢)f8

Figure 1. The dilatation R, in the x direction.
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variables on the internal plaquettes, we obtain, to O(e)
exp(Ste) = C{(1+ p’oa)(1+ p*op)(1+ p’ac)(1+pap)

+p*ri(og+ op)+ (O + op){(Ta+ g+ Oc+0p)

+(0et o) (Ta0s+ 0ATc+ TA0p)]} expl(2—€)B(oe+ 0F)] (2.3)
where p and r are given by p =tanh 8 and r =tanh &8 = ¢8 + O(&?), respectively, and
C is some function of 8, independent of the link variables. o4, o3, o¢ and o, denote
the plaquette variables of the rectangles A, B, C and D, respectively, and og and o

are plaquettes of the squares E and F (see figure 1). In order to get an effective action
Sl.y of the new cells, the rRHS of (2.3) is exponentiated by using the formula

(1+p*0) " =(1-p’o)/(1-p*). (2.4)
As a consequence, S¢. is given by
Scen=pB'(cat+ogt UC+UD)+éI(UE+ oF)

+B'[(og+op)(gatoptoctop)

+(og+ op)(Ta0st+ TATc+ Ta0p)]+ constant. (2.5)
We now find that in addition to the simple plaquette interactions o,,..., oF, more
complicated interactions of O(e) are generated, namely, gzo 4, 0g0g, ... (chair type),

OETATC, . .. (bridge type) and OEOATS, . - - (gomer type). They are illustrated in figure
2. The new coupling constants 8’, 8’ and B’ are given by

tanh 8' = (tanh 8)*
tanh 8’ =tanh[(2 - ¢)B]+ K{1 —tanh’[(2— ¢)B]}

tanh ' = K (2.6)
tanh* 8
K=e8————7F7.
B (1+tanh® B8)*

It is noted that the link variable appearing twice in the product of the plaquette

¥y Y,

Figure 2. The plaquette interactions of O(e); parallel type (coupling constant £v,), chair
type (ev,), corner type (e¥;) and bridge type (£7y,).
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variables like oros does not contribute due to the Z(2) property of the variables.
Moreover an identity on the product of six different plaquette variables
OAO0R0cOp00 =1 is taken into account to obtain (2.6).

2.2. Recursion equations

If, starting from the single coupling constant 8 of the model (2.1) we had also made
dilatations in the y and z directions, as well as the x direction, then we would have
thirteen different coupling constants instead of the three coupling constants of (2.6).
Thirteen is the number of all the possible different coupling constants generated to
O(e). However, it would be reduced to five after isotropy symmetrisation.

Now, to get a complete recursion equation, we start from a theory with five coupling
constants (B, £y,, €v,, €71, £74) On a cube. The B is the coupling constant corresponding
to the simple plaquettes, and the others of O(e) {£v,} are associated with the interactions
of the plaquettes of the three-dimensional configurations as shown in figure 2.

As the algebraic calculation to get the recursion equations are beyond that by hand,
we use the SCHOONSCHIP to obtain them. By taking the potential shifting of the type
A.B(1— ), the dilatation R, in the x direction provides the following transformations:

tanh B’y = tanh® 8 + K. (1 —tanh* 8)£,

tanh B =tanh 84

tanh B =tanh[(2—¢)B]+ K, (1 —tanh’[(2-£)B]) &, (2.7)
tanh 8, = K. £, (a =1-10)

K.=(1+tanh’>g)™*

where B and Bp denote the coupling constants of rectangular plaquettes A(C) and
B(D), respectively, and B¢ is that of the square plaquettes E(F) in figure 1.

The new couplings of O(¢e) are referred to as 8, (a =1-10) and the O(e) part of
the new effective action is given by

S81OATc+ 8500+ 8300+ 84(0at oc)(og+ op)+85(oa+ oc)(og+ 0F)
+8s(ogtop) (ot op)+ 8r0e(aat o) ot op)+ dyoaoc{opt op)
+85050p(0a+ Tc) +81,0e(TaTc + 0g0p). (2.8)

In equation (2.7), the part of the contribution of O(¢)&; (i = 1-13) arises from both
the potential shifting and the coupling constants {evy,;} of O(g). The explicit forms of
£, are shown in table 1. Due to the symmetry in the y and z directions, some coupling
constants remain equal:

Ba=Bb  8i=8, =8,  5,=5 (29)

so nine different coupling constants appear at this stage.
In the next step, the dilatation R, in the y direction is performed. The decimation
after the potential shifting of the type (1 —¢)BgA, provides thirteen coupling constants.
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Table 1. The coefficients a,o, g, (a = 1-4) of &;; & = a,,eBy+ 2, a,, tanh ey, where B, is
the O(1) part of 8. a,, and a,, denote the contributions from the potential shifting and
coupling constants of O(e) and {ev,}, respectively.

eBo tanh ey, tanh ey, tanh g7y, tanh ey,
g 0 2u, 4u, 0 6u;
é,=8,
&y u, 0 4ug 4u, 2u,
£, 0 2u, 0 0 du,
Es5=¢,
& 0 2u, 0 0 0
£, 0 2u, 2u, 0 4u,
&g u, 0 2us+ us 2u, U,
Ey=£g
€10 U, 0 Auy 2u, 0
£, 0 2u, 0 0 2u,
£2= £y
€3 u, 0 du, 0 2u,

wy=p%, wy=p2(1+ PV, uy=p’(1+p?), uy=p*(1+3p7+p%), us=p(1+pH)(1+4p7+p%),
ug=p(1+p?)(1+3p>+ p*), p=tanh B,.
They are given by
tanh 8 =tanh® 84+ K, (1 —tanh* B4)¢,,
tanh Bf =tanh[(2—¢£)B4]1+ K, (1 —tanh’[(2—¢)BA))é,
tanh B% =tanh? B¢+ K, (1 —tanh® B})#, (2.10)
tanh 8, = K £,.3 (¢ =1-10)
K, =[(1+tanh* 8)*(1+tanh®28)*]™"

where the relative positions of the plaquettes A-F on the rectangular parallelepipeds
are preserved by the dilatations. The £, (i=1-13) can be given in the form §; =
bioeBro+ 2, b, tanh 8., where Bgo is the O(1) part of the coupling constant 85. The
explicit forms of by, {b,,} are shown in table 2.

In the third step, the dilatation R, in the z direction provides the transformations

tanh 8% =tanh[(2—¢)B4]+ K.{1 —tanh’[(2— &) B%1}¢,

tanh 87 =tanh® B4+ K,(1 —tanh*® 8g)é,

tanh B¢ =tanh® B4+ K,(1 —tanh® B1)é, (2.11)
tanh 8 = K¢, ., (a=1-10)

K. =1/{1+tahh’[2 tanh™'(tanh® B)]}*(1 +tanh* 28)°.

The £; are given by & = ¢ioeBao+ Z.ci, tanh 8%, where B4, denotes the O(1) part of
B4. See table 3 for ¢,y and ¢,

Thus we arrive at an effective theory on the cube with double size. However, the
approximation is not able to recover the isotropy and we still have thirteen different
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Table 2. The coefficients by, b, of £,; & = b,peBho+2 by, tanh 8,,. B'as, Bho and By are
the O(1) parts of By, B5 and B¢, respectively.

eBso tanh 8] tanh 63 tanh 8} tanh &5 tanh 87 tanh 83 tanh 81,
£ 0 2(v, + vs) 0 0 4v, 0 20, 4v,
£, v, 0 0 2v, 2vg 4y, Vst Vg 0
£, 0 20, 2ug 0 4v, 0 4v, 2v,
£, 0 2, + vs) 0 0 0 0 0 40,
é 0 v, 0 0 0 0 0 0
& 0 2u, 20 0 0 0 4v, 0
£ vy 0 0 vy 20, 20u, g 0
£g 0 2v, 0 0 20, 0 204 2v,
£y v 0 0 20, Uyo 20, Vs 0
€10 o 0 0 pEIN 2v, 20, 0 0
&y Uy 0 0 2v, 20, 0 Vst vg 0
& 0 2, 0 0 0 0 20, 0
13 0 2v, 0 0 0 0 0 2v,
vy =PpaPt ve=(1+pi)’pi

U= Pf\PE(l + P%—:)
vy =pa(l+pilpi
ty=pa(l+pa)pe(l+pi)

vy =pall+pa)(1+3pE +pp)
vy =(1+3p% +ph)peli+pp)
9= pal1+pa)(1+4pE+pi)

vs=pi(l+p})? vio=(1+4pi+pi)pe(1+p})

pa=tanh B, pe=tanh Bg,

Table 3. The coefficients ¢y, ¢,, Of &;; & = c;geBag+ 2,Cio tanh 8%. {w;} are obtained from
where gg = tanh 8%, and
gg=tanh B4 Bho Bho and Bi are the O(1) parts of B4, BE and BE, respectively.

{v,} in table 2 by the change of variables w, =1,

PA=4E.PE=qD?

£B'a0 tanh 8] tanh 8 tanh 8] +tanhé8; tanhdf tanhé! tanhé8) tanh8] tanhé) tanhdj,
£, Wy 0 0 0 2wy 2w, 0 4w, 0 ws+wg 0
&, 0 2w, 2w, 0 0 0 4w, 0 2w, 0 4w,
£, 0 2w, 0 2ws 0 0 4w, 0 4w 0 2w,
£, 0 2w, 0 0 0 0 0 0 0 0 0
£s 0 2w, 2w 0 0 0 0 0 0 0 4w,
£e 0 2w, 0 2ws 0 0 0 0 4w, 0 0
£, w, 0 0 0 Wio 2w, 0 2w, 0 We 0
£ W, 0 0 0 2w, Wo 0 2w, 0 Ws 0
g 0 2w, 0 0 0 0 2w, 0 2w, O 2w,
£o0 W 0 0 0 2w, 2w, 0 2w, 0 0 0
&, 0 2w, 0 0 0 0 0 0 2w, 0 0
£z W 0 0 0 2w, 2w, 0 0 0 wst+ws O
gy 0 2w, 0 0 0 0 0 0 0 0 2w,
coupling constants. To recover the isotropy, we take the simple average as
B'=3BA+BE+BE)
evi =187 +87 +8Y
eyy=3(87 + 85 +8¢ (2.12)

gy; =87
eYs=3(85 + 85 + 8%

and we arrive again at five different couplings.
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Table 4. Numerical values of by, {b;}, Ago, {Aq;} and {A;;} at the MK fixed point By =

1.0044,

b, -0.395

b, 1.10x 1072
b, 8.86x 1072
by 7.80x 1072
b, 2.12x1072
Ago 1.861

Aoy 1.225

Ag, 4913

Aoy 1.694

Aga 2.537

0.882 0.801 0145 1382
1.057 7299 3511 3.766 -
{A}= x10

710531 5193 2644 2319

0.589 1388 0.476 1.309

If B is formally developed as 8 = B,+ £B8,+ £°8, . . . the recursion equations become

Bo= Fux(Bo) (2.13)
at O(1) and
Bi b, Aw Au An Ap A (B
71 b, 0 Ay Ap A Audln
Y2 |=| b2 | Bot 0 An An An Aun |l 7 (2.14)
02 bs 0 Ay An An Au |l v
o b, 0 Ay An Ap Al \ve

at O(e), where by, {b;}, Ago, {Ao;} and {A;} are complicated functions of B,.
The recursion equation (2.13) is nothing more than the MK one, and Fyx(B,) is
given by

Fux(Bo) =3{2tanh™! z5+tanh™'[tanh?*(2 tanh™'z3)]

+tanh™'(tanh® 28,)} zo=tanh B,. (2.15)
Equations (2.13) and (2.15) show a single non-trivial critical point at
Bc =1.0044(= Byy). (2.16)

To see the correction to Byx we should substitute the value of By into the
coefficients by, {b;}, Ao, {Ao;} and {A;} in (2.14). Their numerical values are shown
in table 4.

In the following section, we use (2.14) to investigate the correction in the critical
properties.

3. Results and remarks

The recursion equations for {,} in (2.14) are independent of B,. This means that the
critical behaviour of the canonical model with a coupling constant 8 (2.1) can be
determined simply by tracing the movement of the 8, component of the renormalisation
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group trajectories which move in the five-dimensional space. We find numerically that
the correction to the critical point is

Bic=—0.475 (3.1)
and thus leads to the critical value 8. =1.004 —0.475¢. If we extrapolate this value to
the £ =1 limit following [7], we obtain

BC=BMK+€(1—%s)BIC|s=1=O-767- (3.2)

The value (3.2) is in remarkable agreement with the value 8- =0.761, which is derived
from that of the three-dimensional Ising model through the duality argument.
On the other hand, we find that the correction to.the fixed point becomes rather large:

(B, {¥F}) =(11.973, -0.176, —1.473, —1.034, —0.279). (3.3)

As stated in [8], this is due to the fact that one of the eigenvalues of the recursion
equations becomes marginal. In fact, in this case, the 4 x4 submatrix {A;} in (2.14)
gives the following eigenvalues

Ay 1.065
A 0.1
2 |_| 0138 (3.4)
As 0.009
Ay 0.001

from which we see that the largest one A, is almost marginal. (Note that the largest
eigenvalue of the full matrix is Ao = Ay = 1.861). The right and left eigenvectors for
A, are (—0.989,0.014,0.116, 0.083, 0.022) and (0, 0.134, 0.803, 0.381, 0.438), respectively.
The phenomenon that the critical point has good convergence properties, while the
fixed point does not is not new—it also occurs in the 2D Potts model [8].

An undesirable feature is that the critical point B8,c is located in the direction
associated with the relevant eigenvalue A,. In other words, the fixed point (3.3) no
longer governs the critical behaviour of the canonical model (2.1) but is replaced by
a fixed point located at infinity. This feature makes it difficult to decide whether the
critical point is of first or second order.

It is important to remark about the difference between the behaviour of the 8F and
of the critical point. Following [11], we looked at the x; dependence of each, where
x; are the parameters which change the strength of the potential shifting by the amount
exy. The value of B is very sensitive to the value of x, which reflects the change of
the second largest eigenvalue A; from the relevant to the irrelevant value passing
through the marginal point. On the other hand, the critical point is almost insensitive
of the change of A; and shows a continuous and slow change on x, The details will
be reported in a subsequent paper [12].

Finally, we comment that the calculation is intricate due to the appearance of the
large number of coupling constants. It is possible that these complications would be
reduced by using a Fcc lattice instead of a cubic one, because in two dimensions they

are reduced by using a triangular lattice instead of a square, but we have not investigated
this possibility.
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